Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pathogens ; 10(8)2021 Aug 09.
Article in English | MEDLINE | ID: covidwho-2259558

ABSTRACT

Canine circovirus (CanineCV) is a recently identified virus affecting both domestic and wild carnivores, including foxes, sometimes in presence of severe clinical signs. Its circulation in wild animals can thus represent a potential threat for endangered species conservation and an infection source for dogs. Nevertheless, no data were available on its circulation in the Alps region of Northern Italy. In the present study, samples collected from 186 foxes in the period 2009-2020 from Valle d'Aosta and Veneto regions were tested using a real-time PCR assay, demonstrating a viral circulation of approximatively 2-5%, depending on the considered regions. Two complete or almost complete genome sequences were obtained, highlighting that the detected strains were part of a so defined "fox only" clade, which suggests that, despite common contact opportunities, Alps foxes are not involved in frequent transmission events to domestic dogs. Such genetic isolation could be at least partially attributed to some sort of independent evolution occurred in the foxes, leading to species barrier. Additionally, CanineCV strains in foxes from Italy were unexpectedly related to those previously identified in foxes from the United Kingdom and Scandinavian area. Combining the history of fox distribution in Europe since the last glacial maximum (LGM) with the viral history allowed us to speculate a long-standing coexistence between European canine circovirus and this host, justifying the peculiar geographic distribution and evolutionary paths of the fox infecting clade.

2.
Vaccines (Basel) ; 10(12)2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2163714

ABSTRACT

The pandemic of coronavirus disease 19 (COVID-19) has focused the attention of researchers, and especially public opinion, on the role of the human-animal-environment interface in disease emergence. At the beginning of the COVID-19 pandemic, media reports regarding the role of pets in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused significant concern and social anxiety. Although nowadays proven negligible in developed countries, essentially no studies have been performed in low-income African areas where companion animals are often raised differently from high income countries, and the contact patterns occurring in these scenarios could affect the epidemiological scenario. An extensive molecular biology survey was performed from March 2022 to September 2022 on Namibian dogs residing in urban and rural areas, showing a low but not negligible SARS-CoV-2 prevalence (1%; 95CI: 0.33-2.32%) of 5 out of 500. In only one instance (i.e., a 4-year-old female Labrador) was there a clear association that could be established between the infections of the owner and animal. In all other cases, no evidence of human infection could be obtained and no episodes of COVID-19 were reported by the owners. Although no consistent evidence of pet-to-pet transmission was proven in the present study, a cautionary principle suggests intensive and dedicated investigation into companion animal populations, especially when animal contact is frequent and a particularly susceptible population is present.

3.
Virus Res ; 319: 198877, 2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-2016177

ABSTRACT

The control of infectious bronchitis (IB) is largely based on routine vaccine administration, often using live-attenuated vaccines. However, their capability to replicate and be transmitted among animals and farms implies significant risks. The detection of strains genetically related to vaccines complicates the diagnostic process and understanding of the viral molecular epidemiology. Moreover, reversion to virulence and associated clinical outbreaks can occur although the underlying mechanism are often unknown. In the present study, three vaccine vials, based on IBV GI-23 lineage (also known as Variant2) were deep sequenced through Next Generation Sequencing (NGS) to investigate the presence and features of viral subpopulations. To elucidate the consequences in the field and identify potential markers suitable for a DIVA strategy, the S1 sequences of strains originating from farms in different countries were sequenced and classified based on the knowledge of their vaccination history and similarity with the applied vaccine. Although all considered vaccine batches shared the same consensus sequence, different subpopulations were identified suggesting independent and poorly constrained evolutionary processes. When compared with strains sampled from farms, the vaccine consensus sequences and the respective subpopulations clustered with vaccine strains and no genetic features were consistently shared with field strains. Therefore, if vaccine-induced outbreaks occur, they are more likely to originate from in vivo evolution rather than selection of already present subpopulations. Although some amino acid residues were most commonly detected in field or vaccine strains, no consistent marker could be identified. The occurrence of subpopulations within IBV GI-23-based vaccines and variability featuring different production batches was demonstrated. Being such a phenomenon apparently driven by random genetic drift rather than directional selection, the differentiation between field and vaccine-derived strains appears extremely challenging based on sequence analysis alone. The knowledge of farm management and vaccination history should thus be considered for a proper epidemiological investigation.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Infectious bronchitis virus/genetics , Vaccines, Attenuated/genetics , Viral Vaccines/genetics
4.
Sci Rep ; 11(1): 10696, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1238020

ABSTRACT

A new pandemic caused by the betacoronavirus SARS-CoV-2 originated in China in late 2019. Although often asymptomatic, a relevant percentage of affected people can develop severe pneumonia. Initial evidence suggests that dysregulation of the immune response could contribute to the pathogenesis, as previously demonstrated for SARS-CoV. The presence of genome composition features involved in delaying viral recognition is herein investigated for human coronaviruses (HCoVs), with a special emphasis on SARS-CoV-2. A broad collection of HCoVs polyprotein, envelope, matrix, nucleocapsid and spike coding sequences was downloaded and several statistics representative of genome composition and codon bias were investigated. A model able to evaluate and test the presence of a significant under- or over-representation of dinucleotide pairs while accounting for the underlying codon bias and protein sequence was also implemented. The study revealed the significant under-representation of CpG dinucleotide pair in all HcoV, but especially in SARS-CoV and even more in SARS-CoV-2. The presence of forces acting to minimize CpG content was confirmed by relative synonymous codon usage pattern. Codons containing the CpG pair were severely under-represented, primarily in the polyprotein and spike coding sequences of SARS-CoV-2. Additionally, a significant under-representation of the TpA pair was observed in the N and S region of SARS-CoV and SARS-CoV-2. Increasing experimental evidence has proven that CpG and TpA are targeted by innate antiviral host defences, contributing both to RNA degradation and RIG-1 mediated interferon production. The low content of these dinucleotides could contribute to a delayed interferon production, dysregulated immune response, higher viral replication and poor outcome. Significantly, the RIG-1 signalling pathway was proven to be defective in elderlies, suggesting a likely interaction between limited viral recognition and lower responsiveness in interferon production that could justify the higher disease severity and mortality in older patients.


Subject(s)
COVID-19 , CpG Islands/immunology , Genome, Viral/immunology , RNA, Viral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/genetics , COVID-19/immunology , Humans , RNA Stability/immunology , RNA, Viral/genetics , RNA, Viral/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
5.
Viruses ; 12(11)2020 11 10.
Article in English | MEDLINE | ID: covidwho-918257

ABSTRACT

Bovine coronavirus (BoCV) is an important pathogen of cattle, causing severe enteric disease and playing a role in the bovine respiratory disease complex. Similar to other coronaviruses, a remarkable variability characterizes both its genome and biology. Despite their potential relevance, different aspects of the evolution of BoCV remain elusive. The present study reconstructs the history and evolution of BoCV using a phylodynamic approach based on complete genome and spike protein sequences. The results demonstrate high mutation and recombination rates affecting different parts of the viral genome. In the spike gene, this variability undergoes significant selective pressures-particularly episodic pressure-located mainly on the protein surface, suggesting an immune-induced selective pressure. The occurrence of compensatory mutations was also identified. On the contrary, no strong evidence in favor of host and/or tissue tropism affecting viral evolution has been proven. The well-known plasticity is thus ascribable to the innate broad viral tropism rather than mid- or long-term adaptation. The evaluation of the geographic spreading pattern clearly evidenced two clusters: a European cluster and an American-Asian cluster. While a relatively dense and quick migration network was identified in the former, the latter was dominated by the primary role of the United States (US) as a viral exportation source. Since the viral spreading pattern strongly mirrored the cattle trade, the need for more intense monitoring and preventive measures cannot be underestimated as well as the need to enforce the vaccination of young animals before international trade, to reduce not only the clinical impact but also the transferal and mixing of BoCV strains.


Subject(s)
Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Coronavirus, Bovine/genetics , Coronavirus, Bovine/pathogenicity , Evolution, Molecular , Genetic Variation , Animals , Cattle , Cattle Diseases/transmission , Cattle Diseases/virology , Coronavirus Infections/epidemiology , Genome, Viral , Livestock , Mutation , Phylogeny , Phylogeography , Recombination, Genetic , Sequence Analysis, DNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Transportation , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL